Hilbert transform, Toeplitz operators and Hankel operators, and invariant $A_\infty$ weights

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Essentially Commuting Hankel and Toeplitz Operators

We characterize when a Hankel operator and a Toeplitz operator have a compact commutator. Let dσ(w) be the normalized Lebesgue measure on the unit circle ∂D. The Hardy space H is the subspace of L(∂D, dσ), denoted by L, which is spanned by the space of analytic polynomials. So there is an orthogonal projection P from L onto the Hardy space H, the so-called Hardy projection. Let f be in L∞. The ...

متن کامل

On Truncations of Hankel and Toeplitz Operators

We study the boundedness properties of truncation operators acting on bounded Hankel (or Toeplitz) infinite matrices. A relation with the Lacey-Thiele theorem on the bilinear Hilbert transform is established. We also study the behaviour of the truncation operators when restricted to Hankel matrices in the Schatten classes. 1. Statement of results In this note we will be dealing with infinite ma...

متن کامل

Hankel Operators on Hilbert Space

commonly known as Hilbert's matrix, determines a bounded linear operator on the Hilbert space of square summable complex sequences. Infinite matrices which possess a similar form to H, namely those that are 'one way infinite' and have identical entries in cross diagonals, are called Hankel matrices, and when these matrices determine bounded operators we have Hankel operators, the subject of thi...

متن کامل

Toeplitz and Hankel Operators on a Vector-valued Bergman Space

In this paper, we derive certain algebraic properties of Toeplitz and Hankel operators defined on the vector-valued Bergman spaces L2,C n a (D), where D is the open unit disk in C and n ≥ 1. We show that the set of all Toeplitz operators TΦ,Φ ∈ LMn(D) is strongly dense in the set of all bounded linear operators L(L2,Cn a (D)) and characterize all finite rank little Hankel operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matemática Iberoamericana

سال: 1997

ISSN: 0213-2230

DOI: 10.4171/rmi/223